THE ICON
PROGRAMMING
LANGUAGE

Ralph E. Griswold * Madge T. Griswold






icon
o O
Jool

The Icon Programming Language

Third Edition

Ralph E. Griswold and Madge T. Griswold



This book originally was published by Peer-to-Peer Communications. It is out
of print and the rights have reverted to the authors, who hereby place it in the public
domain.

Library of Congress Cataloging-in-Publication Data

Griswold, Ralph E., 1934-
The Icon programming language / Ralph E. Griswold and Madge T.
Griswold. -- 3rd ed.
p. om.
Includes bibliographical references (p. ) and index.
ISBN 1-57398-001-3 (pbk.)
1. Icon (computer program language) I Griswold, Madge T., 1941- .
II. Title.
QA76.73.119G74 1996
005.13'3--dc20. 96-43514
CcIp

10 98 7 6 5 4 3 2 1

ISBN 1-57398-001-3

DISCLAIMER

This book is provided "as is". Any implied warranties of merchantability and fitness for a particular purpose are
expressly disclaimed. This book contains programs that are furnished as examples. These examples have notbeen
thoroughly tested under all conditions. Therefore, the reliability, serviceability, or function of any program code
herein is not guaranteed.

To the best of the authors' and publisher's knowledge, the information presented in this book was correct at the time
it was written and conveyed as accurately as possible. However, some information may be incorrect or may have
changed prior to publication. The authors and publisher make no claim that the material contained in this book is
entirely correct, and assume no liability for use of the material contained herein.

A number of words that appear in initial capitalization in the text may be trademarks or service marks, or signify
other proprietary rights. No attempt has been made, however, to designate as trademarks or service marks all
personal computer words or terms in which proprietary rights might exist. The inclusion, exclusion, or definition
of a word or term is not intended to affect, or to express any judgement on, the validity or legal status of any
proprietary right that may be claimed in that word or term.

Note: This book describes Version 9.3 of the Icon programming language. All known
errors in the original printing have been corrected. Marginal revision bars identify
substantive corrections.

Ralph E. Griswold and Gregg M. Townsend, August 2002



Contents

FOREWORD
INTRODUCTION
ACKNOWLEDGMENTS
1 GETTING STARTED

Program Structure 1
Success and Failure 4
Control Structures 6
Procedures 7
Expression Syntax 9
Preprocessing 11
Notes 12

2 EXPRESSIONS

Sequential Evaluation 17
Goal-Directed Evaluation 18
Iteration 20

Integer Sequences 20
Alternation 21

Xi

XV

XIX

17



3

4

Conjunction 22

Loops 23

Selection Expressions 25
Comparison Operations 28
Assignment 28

Values, Variables, and Results 30
Argument Evaluation 30
Procedure Returns 31

Notes 32

STRING SCANNING

The Concept of Scanning 37
String Positions 38

String Analysis 39

Csets 40

String-Analysis Functions 41
Scanning Environments 43
Scanning Keywords 44
Augmented String Scanning 44
Notes 45

CHARACTERS, CSETS, AND STRINGS

Characters 47

Strings 48

Lexical Comparison 50
String Construction 51
String-Valued Functions 52
Substrings 56

Csets 60

String Analysis 61

Conversion between Csets and Strings 61

Notes 62

Contents

37

47



Contents

5 NUMERICAL COMPUTATION AND BIT OPERATIONS

6

7

8

Numeric Literals 63
Arithmetic 64

Numerical Comparison 65

Mathematical Computations 65

Random Numbers 66
Bit Operations 66
Notes 67

STRUCTURES

Records 71

Lists 72

Sets 79

Tables 81

Properties of Structures 83
Notes 84

EXPRESSION EVALUATION

Backtracking 87
Bounded Expressions 90
Mutual Evaluation 92
Limiting Generation 93
Repeated Alternation 94
Notes 95

PROCEDURES

Procedure Declarations 97
Scope 99

Procedure Invocation 101

Variables and Dereferencing 103

Notes 105

63

71

87

97



vi

Contents

9 CO-EXPRESSIONS 109

Co-Expression Operations 109

Using Co-Expressions 113
Programmer-Defined Control Structures 115
Other Features of Co-Expressions 118

Notes 122

10 DATA TYPES 123

Type Determination 123
Type Conversion 124
The Null Value 127
Comparing Values 128
Copying Values 130
Notes 131

11 INPUT AND OUTPUT 133

12

Files 133

Input 135

Output 136

Text Files and Binary Files 138

Pipes 140

Keyboard Functions 141
Random-Access Input and Output 141
Operations on Files 141

Notes 142

AN OVERVIEW OF GRAPHICS 143

Window Operations and Attributes 143
Drawing 145

Text 149

Color 151

Images 153



Contents

13

14

15

16

Events 155
Dialogs 157
Visual Interfaces 158
Other Features 159
Notes 160

OTHER FEATURES

Sorting Structures 161
String Names 163

String Invocation 164
Dynamic Loading 166
Storage Management 166
Miscellaneous Facilities 169
Notes 171

RUNNING AN ICON PROGRAM

Basics 173
Input and Output Redirection 174
Command-Line Arguments 175

Environment Variables 175
Notes 176

LIBRARIES

Using Procedure Libraries 177

The Icon Program Library 178
Creating New Library Modules 184
Notes 185

ERRORS AND DIAGNOSTIC FACILITIES

Errors 187
Error Conversion 189

String Images 190

vii

161

173

177

187



viii

17

18

19

20

Program Information 192
Tracing 192

The Values of Variables 195
Variables and Names 197
Notes 198

PROGRAMMING WITH GENERATORS

Nested Iteration 201
Goal-Directed Evaluation and Searching 203

Recursive Generators 210
STRING SCANNING AND PATTERN MATCHING

Arithmetic Expressions 211
Pattern Matching 216

Grammars and Languages 220
USING STRUCTURES

Trees 227

Dags 231

Graphs 233
Two-Way Tables 235

MAPPINGS AND LABELINGS

Mapping Techniques 237
Labelings 242

Appendixes
SYNTAX

Programs 248
Language Elements 252
Program Layout 255

Precedence and Associativity 257

Contents

201

211

227

237

247



Contents

B

CHARACTERS

Glyphs 261

ASCII Control Characters 268

PREPROCESSING

Include Directives 269

Line Directives 270

Define Directives 270
Undefine Directives 271
Predefined Symbols 271
Substitution 271

Conditional Compilation 272

Error Directives 272

LANGUAGE REFERENCE MANUAL

Functions 275

Prefix Operations 295
Infix Operations 298
Other Operations 303
Keywords 306
Control Structures 311

Generators 314

E COMMAND-LINE OPTIONS

F ENVIRONMENT VARIABLES

G ERROR MESSAGES

Preprocessor Errors 319
Syntax Errors 320
Linking Error 321

Run-Time Errors 321

261

269

273

315

317

319



H PLATFORM-SPECIFIC DIFFERENCES

/

J

Character Sets 324
Language Features 325
Other Issues 326

SAMPLE PROGRAMS

Command-Line Options 329
Structure Images 331

Concordances 334

Animal Game 337

Randomly Generated Sentences 341
N Queens 348

N Queens Displayed Graphically 350

ICON RESOURCES
GLOSSARY
REFERENCES

INDEX

Contents

323

329

355

357

369

373



Foreword

A simple fact keeps me coming back to Icon: With Icon, I can write programs I don’t
have the time to write in C or C++. Without Icon, those programs wouldn’t be
written and tasks that could be automated would be done manually instead.

When teaching a course in comparative programming languages at The Univer-
sity of Arizona, I took the liberty of attempting to identify the design philosophy of
Icon:

e provide a “critical mass” of types and operations
e free the programmer from worrying about details
e put the burden of efficiency on the language implementation

C scores about zero on those points. C++ provides the ability to build or buy a
“critical mass” and it also can free the programmer from worrying about details in
many cases, but that takes effort. With Icon, it comes in the box.

I think that many programmers don’t have a language like Icon in their toolbox.
The result is that instead of building a personal tool to automate a task, the task is
done manually. I think every programmer can benefit by knowing a language like
Icon.

C, C++, and Icon can be viewed as filling three different niches:

C A time- and space-efficient language well suited for applications that
call for neither abstract data types or object-oriented design (to manage
complexity).

Xi



Xii Foreword

C++  Everything that C offers plus abstract data types and object orientation
to manage complexity in larger applications. But you can’t have your
cake and eat it too — the cost of C++ is language complexity and fairly
primitive debugging environments.

Icon A compact but powerful language that’s well suited for building tools.
Icon Versus C

Fundamentally, C presents three advantages over Icon: faster execution (typi-
cally an order of magnitude) and less memory usage (perhaps half as much). C
evolved in an environment where machines were 100 times slower and processes
had 100 times less memory available to them than is the case today. I think C became
very popular because it allowed one to work at a relatively higher level without
paying a significant price in terms of either execution time or memory usage.
However, for applications where speed and memory utilization are not primary
concerns, the fine-grained nature of C becomes a liability.

Consider a simple example: a function that concatenates each element in a list
of strings to produce a single string with the elements separated by commas. In Icon,
it’s three of lines of code; in C, it's maybe a dozen. What's more interesting is that I
think the Icon programmer would be far more likely to bet a day’s pay that his
solution is completely correct than would the C programmer.

Several years ago, when reading the net.sources newsgroup on a regular basis,
I saw program after program that were thousands of lines in C that I pictured as
maybe a few hundred inIcon. For most of those programs Icon would have provided
a completely suitable execution profile in terms of both speed and space. I was truly
saddened by all the effort that had been needlessly expended to write those
programs in C.

Icon Versus C++

When firstlearning C++Iwondered if, in fact, C++ wouldn’t have the capability
to fill the niche Icon occupies. One design goal of C++ is that it can be used to build
(or buy) whatever higher-level data types one might need, but the fact is that it's a
major undertaking to do that. Today, almost a decade after C++ came onto the scene,
there is still no generally accepted and widely used library of foundation classes
such as strings, lists, sets, associative arrays, and so forth.

In contrast, Icon provides a great set of abstract data types right out of the box.
I've seen many C++ string classes, but I've yet to see a string class that approaches
the simple elegance and power of Icon’s string type. The same is true for lists, sets,
and associative arrays.
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On Memory Management

At the 1988 Usenix C++ technical conference Bill Joy said that he considered it
tobeimpossible to build a large software system in C without memory management
problems. C++ addresses memory management to a certain extent with construc-
tors and destructors, but the fact remains that the C++ programmer must be very
cognizant of the lifetime of objects and where responsibility should lie for destroy-
ing a given object. There is a significant segment of the software market that consists
of tools to help C and C++ programmers locate memory management bugs. In
contrast, Icon provides fully automatic storage management. Objects that are no
longer needed are deleted automatically.

The Programming Experience

To me, working with Icon is a lot like drawing with pencil and paper. Icon gives
me a compact set of tools whose various usages are easy to remember and that lets
me focus on the problem I'm trying to solve.

Many, perhaps most, programmers don’t have a language like Icon in their
toolbox. The result is that instead of being able to build a tool to automate a given
task, the task is often done manually. I think every programmer can benefit by
knowing a language like Icon.

William H. Mitchell

The University of Arizona






Introduction

Icon is one of the most elegant and powerful programming languages in use today.
Itis a high-level, general-purpose language that contains a wide variety of features
for processing and presenting symbolic data — strings of characters and structures
— both as text and as graphic images.

Applications of Icon include analyzing natural languages, reformatting data,
generating computer programs, manipulating formulas, formatting documents,
artificial intelligence, rapid prototyping, and graphic display of complex objects, to
name just a few.

Icon is well suited to applications where quick solutions are needed —
solutions that can be obtained with a minimum amount of time and programming
effort. It is very useful for one-shot programs and for speculative efforts like
computer-generated poetry, in which a proposed solution is more heuristic than
algorithmic. It also excels in very complicated applications that involve complex
data structures.

Several general characteristics contribute to Icon’s “personality”. The syntax
of Icon is similar in appearance to Pascal and C. Although Icon programs superfi-
cially resemble programs written in Pascal and C, Icon is far more powerful than
they are.

In Icon, a string of characters is a value in its own right rather than being
represented as an array of characters. Strings may be arbitrarily long; the length of
a string is limited only by the amount of memory available. Icon has neither storage
declarations nor explicit allocation and deallocation operations. Management of
storage for strings and other values is handled automatically.

XV
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Icon has no type declarations. A structure can contain values of different types.
Type conversion is automatic. For example, a numeric value read into a program as
astring is converted automatically to a number if it is used in a numerical operation.
Error checking is rigorous; a value that cannot be converted to a required type in a
meaningful way causes termination of program execution with a diagnostic mes-
sage.

Many of Icon’s control structures resemble those of other programming
languages. Icon, however, uses the concept of the success or failure of a computa-
tion, not Boolean values, to drive control structures. For example, in

if find(s1, s2) then write("found") else write("not found")

the expression find(s1,s2) succeeds if the string s1 exists in s2 but fails otherwise.
The success or failure of this expression determines which action is taken. This
mechanism allows an expression to produce a meaningful value, if there is one, and
at the same time to control program flow, as in

if i ;= find(s1, s2) then write(i)
which writes the location of sl in s2 if there is one.

The concept of failure allows many other computations to be phrased in
natural and concise ways. For example,

while line := read() do
process(line)

reads lines of input and processes them until the end of the file, which causes read()
to fail, terminating the while loop.

Many computations can have more than one result. Consider

find("th", "this thesis is the best one")
Here "th" occurs at three positions in the second argument. In most programming
languages, such a situation is resolved by selecting one position for the value of the
function. This interpretation discards potentially useful information. Icon general-
izes the concept of expression evaluation to allow an expression to produce more
than one result. Such expressions are called generators. The results of a generator are
produced in sequence as determined by context. One context is iteration:

every exprl do expr2

which evaluates expr2 for every result produced by exprl. An example is

every i := find(sl, s2) do write(i)
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which writes all the positions at which s1 occurs in s2.

In many computations, some combinations of alternatives may lead to suc-
cessful computations, while other combinations may not. Icon uses the concepts of
success and failure in combination with generators to perform goal-directed evalua-
tion. If a computation fails, alternative values from generators are produced auto-
matically in an attempt to produce an overall successful result. Consider, for
example,

if find(s1, s2) = 10 then expr1 else expr2

The intuitive meaning of this expression is: “If s1 occurs in S2 at a position that is
equal to 10, then evaluate expr1; otherwise evaluate expr2”. This is, in fact, exactly
what this expression does in Icon.

Neither generators nor goal-directed evaluation depends on any particular
feature for processing strings; find() is useful pedagogically, but many possibilities
exist in numerical computation and other contexts. Icon also allows programmers
to write their own generators, and there is no limit to the range of their applicability.

SinceIconis oriented toward the processing of textual and symbolicdata, ithas
a large repertoire of functions for operating on strings, of which find() is only one
example. Icon also has a high-level string scanning facility. String scanning estab-
lishes asubject thatis the focus for string-processing operations. Scanning operations
then apply to this subject. As operations on the subject take place, the position in the
subject may be changed. A scanning expression has the form

S ? expr

where s is the subject and expr performs scanning operations on this subject.

Matching functions change the position in the subject and produce the substring
of the subject that they “match”. For example, tab(i) moves the position to i and
produces the substring between the previous and new positions. A simple example
of string scanning is

text ? write(tab(find("the")))

which writes the initial substring of text up to the first occurrence of "the". The
function find() is the same as the one given earlier, but in string scanning its second
argument need not be specified. Note that any operation, such as write(), can appear
in string scanning.

Icon provides several types of structures for organizing data in different ways.
Records allow references to values by field name and provide programmer-defined
data types. Lists consist of ordered sequences of values that can be referenced by
position. Lists also can be used as stacks and queues. Sets are unordered collections
of values. Set membership can be tested and values can be inserted into and deleted
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from sets as needed. The usual set operators of union, intersection, and difference
are available as well. Tables provide associative lookup in which subscripting with
a key produces the corresponding value.

Icon has extensive graphics facilities for creating and manipulating windows,
drawing, writing text in different fonts, accepting user input from the keyboard and
mouse, and so on.

Icon has much more; these are just the highlights of the language.

Icon has been implemented for many computers and operating systems,
including the Acorn Archimedes, the Amiga, the Atari ST, CMS, the Macintosh,
Microsoft Windows, MS-DOS, MVS, 0S/2, VAX/VMS, many different UNIX
platforms, and Windows NT. These implementations are in the public domain and
most of them can be downloaded via the World Wide Web.

Icon, like many other programming languages, has evolved over a period of
time. The firstedition of this book described Version 5 of Icon, and the second edition
described Version 8. The third edition describes Version 9.3. It not only includes
descriptions of features that have been added since Version 8, but it also is
completely revised. It contains many improvements based on continuing experi-
ence in teaching and using Icon.

The reader of this book should have a general understanding of the concepts
of computer programming languages and a familiarity with the current terminol-
ogy in the field. Programming experience with other programming languages, such
as Pascal or C, is desirable.

The first 11 chapters of this book describe the main features of Icon. Chapter
12 contains an overview of Icon’s graphics facilities, and Chapter 13 describes
features of Icon that do not fit neatly into other categories. Chapter 14 provides
information about running Icon programs. Chapter 15 describes libraries of Icon
procedures available to extend and enhance Icon’s capabilities. Chapter 16 deals
with errors and diagnostic facilities. Chapters 17 through 20 illustrate programming
techniques and provide examples of programming in Icon.

Some chapters have a final section entitled Notes. These sections provide
additional information, references to other material, programming tips, and so on.

Appendix A summarizes the syntax of Icon. Appendix B lists character codes
and their glyphs. Appendix C describes preprocessing facilities. A reference manual
for Icon is contained in Appendix D. Command-line options appear in AppendixE,
and environment variables are discussed in Appendix F. Error messages are listed
in Appendix G, and platform-specific aspects of Icon are described in Appendix H.
Appendix I contains complete sample programs and Appendix J provides informa-
tion about obtaining material related to Icon. The book concludes with a glossary of
terms related to Icon.
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Getting Started

This chapter introduces a few basic concepts of Icon — enough to get started.
Subsequent chapters discuss these concepts in greater detail.

PROGRAM STRUCTURE

A good way to learn a programming language is to write programs. There is a fine
tradition for beginning to learn a new programming language by writing a program
that produces a greeting. In Icon this takes the form:

procedure main()

write("Hello world")

end

This program writes Hello world.

The reserved words procedure and end bracket a procedure declaration. The
procedure name is main. Every program musthave a procedure with the name main;
this is where program execution begins. Most programs, except the simplest ones,
consist of several procedures.

Procedure declarations contain expressions that are evaluated when the
procedure is called. The call of the function write simply writes its argument, a string
that is given literally in enclosing quotation marks. When execution of a procedure
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reaches its end, it returns. When the main procedure returns, program execution
stops.

To illustrate the use of procedures, the preceding program can be divided into
two procedures as follows:
procedure main()
hello()

end

procedure hello()
write("Hello world")
end
Note that main and hello are procedures, while write is a function that is built into
the Icon language. Procedures and functions are used in the same way. The only
distinction between the two s that functions are builtinto Icon, while procedures are

declared in programs. The procedure hello writes the greeting and returns to main.
The procedure main then returns, terminating program execution.

Expressionsinthebody of a procedure are evaluated in the order in which they
appear. Therefore, the program
procedure main()

write("Hello world")
write(" this is a new beginning")

end
writes two lines:

Hello world
this is a new beginning

Procedures may have parameters, which are givenin a listenclosed in the parenthe-
ses that follow the procedure name in the declaration. For example, the program

procedure main()

greet("Hello", "world")

end

procedure greet(what, who)

write(what)
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write(who)

end
writes

Hello
world

Like most programming languages, Icon has both values and variables that
have values. This is illustrated by

procedure main()

line := "Hello world"
write(line)

end
The operation
line := "Hello world"

assigns the value "Hello world" to the identifier line, which is a variable. The value of
line is then passed to the function write.

All 256 ASCII characters may occur in strings. Strings may be written literally
as in the example above, and they can be computed in a variety of ways. There is no
limit on the length of a string except the amount of memory available. The empty
string, given literally by ", contains no characters; its length is 0.

Identifiers must begin with a letter or underscore, which may be followed by
other letters, digits, and underscores. Upper- and lowercase letters are distinct.
Examples of identifiers are comp, Label, test10, and entry_value. There are other
kinds of variables besides identifiers; these are described in later chapters.

Note that there is no declaration for the identifier line. Scope declarations,
which are described in Chapter 8, are optional for local identifiers. In the absence of
a scope declaration, an identifier is assumed to be local to the procedure in which it
occurs, as is the case with line. Local identifiers are created when a procedure is
called and are destroyed when the procedure returns. A local identifier can only be
accessed in the procedure call in which it is created.

Most identifiers are local. The default to local is an example of a design
philosophy of Icon: Common usages usually defaultautomatically without the need
for the programmer to write them out.

Icon has no type or storage declarations. Any variable can have any type of
value. The correctness of types is checked when operations are performed. Storage
for valuesis provided automatically. The programmer need not be concerned about
it.
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The character # in a program signals the beginning of a comment. The # and
the remaining characters on the line are ignored when the program is compiled. An
example of the use of comments is

# This procedure illustrates the use of parameters. The

# first parameter provides the message, while the second
# parameter specifies the recipient.

#

procedure greet(what, who)

write(what) # message
write(who) # recipient
end

Note that the end of a line terminates a comment. Each line of a multi-line comment
must have a #.

If a # occurs in a quoted literal, it stands for itself and does not signal the
beginning of a comment. Therefore,

write("#======#")

writes

SUCCESS AND FAILURE
The function read() reads a line. For example,
write(read())
reads aline and writes it out. Note that the value produced by read() is the argument

of write().

The function read() is one of a number of expressions in Icon that may either
succeed or fail. If an expression succeeds, it produces a value, such as a line of input.
If an expression fails, it produces no value. In the case of read(), failure occurs when
the end of the input file is reached. The term outcome is used to describe the result of
evaluating an expression, whether it is success or failure.

Expressions that may succeed or fail are called conditional expressions. Com-
parison operations, for example, are conditional expressions. The expression

count>0
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succeeds if the value of count is greater than 0 but fails if the value of count is not
greater than 0.

As a general rule, failure occurs if a relation does not hold or if an operation
cannotbe performed butis notactually erroneous. For example, failure occurs when
an attempt is made to read but when there are no more lines. Failure is an important
part of the design philosophy of Icon. It accounts for the fact that there are situations
in which operations cannot be performed. It corresponds to many real-world
situations and allows programs to be formulated in terms of attempts to perform
computations, the recognition of failure, and the possibility of alternatives.

Two other conditional expressions are find(s1, s2) and match(s1, s2). These
functions succeed if s1 is a substring of s2 but fail otherwise. A substring is a string
that occurs in another string. The function find(s1, s2) succeeds if s1 occurs
anywhere in s2, while match(s1, s2) succeeds only if s1 is an initial substring that
occurs at the beginning of s2. For example,

find("on", "slow motion")
succeeds, since "on" is contained in "slow motion", but
find("on", "radio noise")

fails, since "on" is not a substring of "radio noise" because of the intervening blank
between the "0" and the "n". Similarly,

match("on", "slow motion")

fails, since "on" does not occur at the beginning of "slow motion". On the other hand,

match("slo", "slow motion")

succeeds.
If an expression that fails is an argument in another expression, the other
expression fails also, since there is no value for its argument. For example, in
write(read())
if read() fails, there is nothing to write. The function write() is not called and the
whole expression fails.
The context in which failure occurs is important. Consider

line :=read()
write(line)
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If read() succeeds, the value it produces is assigned to line. If read() fails, however,
no new value is assigned to line, because read() is an argument of the assignment
operation. There is no value to assign to line if read() fails, no assignment is
performed, and the value of line is not changed. The assignment is conditional on the
success of read(). Since

line :=read()
and
write(line)

are separate expressions, the failure of read() does not affect write(line); it just writes
whatever value line had previously.

CONTROL STRUCTURES

Control structures use the success or failure of an expression to govern the evalua-
tion of other expressions. For example,

while line := read() do
write(line)

repeatedly evaluates read() in a loop. Each time read() succeeds, the value it
produces is assigned to line and write(line) is evaluated to write that value. When
read() fails, however, the assignment operation fails and the loop terminates. In
other words, the success or failure of the expression that follows while controls
evaluation of the expression that follows do.

Note that assignment is an expression. It can be used anywhere that any
expression is allowed.

Words like while and do, which distinguish control structures, are reserved
and cannot be used as identifiers. A complete list of reserved words is given in
Appendix A.

Another frequently used control structure is if-then-else, which selects one of
two expressions to evaluate, depending on the success or failure of a conditional
expression. For example,

if count > 0 then sign := 1 else sign := -1

assigns 1 to sign if the value of count is greater than 0, but assigns -1 to sign
otherwise. The else clause is optional, as in
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if count > 0 then sign ;=1

which assigns a value to sign only if count is greater than 0.

PROCEDURES
Procedures are the major units of a program. Each procedure in a program typically
performs a separate logical task. Some examples follow.
The following procedure prints only the lines that contain the string s:
procedure locate(s)

while line := read() do
if find(s, line) then write(line)

end

For example,
procedure main()
locate("fancy")

end

writes all the lines of the input file that contain an occurrence of the string “fancy".

This procedure is more useful if it also writes the numbers of the lines that
contain s. To do this, it is necessary to count each line as it is read:

procedure locate(s)
lineno :=0

while line := read() do {
lineno :=lineno + 1
if find(s, line) then write(lineno, ": ", line)

}

end

The braces in this procedure enclose a compound expression, which in this case
consists of two expressions. One expression increments the line number and the
other writes the line if it contains the desired substring. Compound expressions
must be used wherever one expression is expected by Icon’s syntax but several are
needed.

Note that write() has three arguments in this procedure. The function write()
canbe called with many arguments; the values of the arguments are written one after
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another, all on the same line. In this case there is a line number, followed by a colon
and a blank, followed by the line itself.

To illustrate the use of this procedure, consider an input file that consists of the
following song from Shakespeare’s play The Merchant of Venice:

Tell me, where is fancy bred,
Or in the heart or in the head?
How begot, how nourished?
Reply, reply.

It is engender'd in the eyes,
With gazing fed; and fancy dies
In the cradle where it lies:

Let us all ring fancy's knell;
I'll begin it, — Ding, dong, bell.

The lines written by locate("fancy”) are:

1: Tell me, where is fancy bred,
6: With gazing fed; and fancy dies
8: Let us all ring fancy's knell;

This example illustrates one of the more important features of Icon: the
automatic conversion of values from one type to another. The first argument of
write() in this example is an integer. Since write() expects to write strings, this integer
is converted to a string; it is not necessary to specify conversion. This is another
example of a default, which makes programs shorter and saves the need to explicitly
specify routine actions where they clearly are the natural thing to do.

Like other expressions, procedure calls may produce values. The reserved
word return is used to indicate a value to be returned from a procedure call. For
example,

procedure countm(s)
count:=0

while line :=read() do
if match(s, line) then count := count + 1

return count

end

produces a count of the number of input lines that begin with s.

A procedure call also can fail. This is indicated by the reserved word fail, which
causes the procedure call to terminate but fail instead of producing a value. For
example, the procedure
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procedure countm(s)
count:=0

while line := read() do
if match(s, line) then count := count + 1

if count > 0 then return count else fail
end

produces a count of the number of lines that begin with s, provided that the count
is greater than 0. The procedure fails, however, if no line begins with the string s.

EXPRESSION SYNTAX

Icon has several types of expressions, asillustrated in the preceding sections. Literals
suchas "Helloworld" and 0 are expressions that designate valuesliterally. Identifiers,
such as line, are also expressions.

Function and procedure calls, such as
write(line)

and

greet("Hello", "world")

are expressions in which parentheses enclose arguments.

Operators are used to provide a concise, easily recognizable syntax for
common operations. For example, —i produces the negative of i, while i + j produces
the sum of i and j. The term argument is used for both operators and functions to
describe the expressions on which they operate.

Infix operations, such as i+jand i0j, have precedences that determine which
operations apply to which arguments when they are used in combination. For
example,

i+j 0k
groups as
i+ (j Ok)

since multiplication has higher precedence than addition, as is conventional in
numerical computation.
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Associativity determines how expressions group when there are several
occurrences of the same operation in combination. For example, subtraction associ-
ates from left to right so that

i—-j—k
groups as

(i-)-k

On the other hand, exponentiation associates from right to left so that

injrk
groups as
i~("Mk)

Assignment also associates from right to left.

The precedences and associativities of various operations are mentioned as the
operations are introduced in subsequent chapters. Appendix A summarizes the
precedences and associativities of all operations.

Parentheses can be used to group expressions in desired ways, as in
(i+j) Ok

Since there are many operations in Icon with various precedences and associativi-
ties, itis safest to use parentheses to assure that operations group in the desired way,
especially for operations that are not used frequently.

Where the expressions in a compound expression appear on the same line,
they must be separated by semicolons. For example,

while line := read() do {
count :=count + 1
if find(s, line) then write(line)

}

also can be written as

while line := read() do
{count := count + 1; if find(s, line) then write(line)}

Programs usually are easier to read if the expressions in a compound expression are
written on separate lines, in which case semicolons are not needed.
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Unlike many programming languages, Icon has no statements; it just has
expressions. Even control structures, such as

if exprlthen expr2else expr3

are expressions. The outcome of such a control structure is the outcome of expr2 or
expr3, whichever is selected. Even though control structures are expressions, they
usually are not used in ways that the values they produce are important. They
usually stand alone as if they were statements, as illustrated by the examples in this
chapter.

Keywords, consisting of the character & followed by one of a number of
specific words, are used to designate special operations that require no arguments.
For example, the value of &time is the number of milliseconds of processing time
since the beginning of program execution.

Any argument of a function, procedure, operator, or control structure may be
any expression, however complicated that expression is. There are no distinctions
among the kinds of expressions; any kind of expression can be used in any context
where an expression is legal.

PREPROCESSING
Icon programs are preprocessed before they are compiled. During preprocessing,

constants can be defined, other files inserted, code can be included or excluded,
depending on the definition of constants, and so on.

Preprocessor directives are indicated by a $ at the beginning of a line, as in
$define Limit 100

which defines the symbol Limit and gives it the value 100. Subsequently, whenever
Limit appears, it is replaced by 100 prior to compilation. Thus,

if count > Limit then write("limit reached")
becomes

if count > 100 then write("limit reached")

The text of a definition need not be a number. For example,
$define suits "SHDC"

defines suits to be a four-character string.
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Another useful preprocessor directive allows a file to be included in a pro-
gram. For example,

$include "disclaim.icn"
inserts the contents of the file "disclaim.icn" in place of the $include directive.

Other preprocessor directives and matters related to preprocessing are de-
scribed in Appendix C.

Notation and Terminology

In describing what operators and functions do, the fact that their arguments
may be syntactically complicated is notsignificant. Itis the values produced by these
expressions that are important.

Icon has several types of data: strings, integers, real numbers, and so forth.
Many functions and operations require specific types of data for their arguments.
Single letters are used in this book to indicate the types of arguments. The letters are
chosen to indicate the types that operations and functions expect. These letters
usually are taken from the first character of the type name. For example, i indicates
an argument that is expected to be an integer, while s indicates an argument that is
expected to be a string. For example, —i indicates the operation of computing the
negative of the integer i, while i1 + i2 indicates the operation of adding the integers
i1 and i2. This notation is extended following usual mathematical conventions, so
that j and k also are used to indicate integers. Other types are indicated in a similar
fashion. Finally, xand y are used for arguments that are of unknown type or that may
have one of several types. Chapter 10 discusses types in more detail.

This notation does not mean that arguments must be written as identifiers. As
mentioned previously, any argument can be an expression, no matter how compli-
cated that expressionis. The use of letters to stand for expressionsisjusta device that
is used in this book for conciseness and to emphasize the expected data types of
arguments. These are only conventions. The letters in identifiers have no meaning
to Icon. For example, the value of s in a program could be an integer. In situations
where the type produced by an expression is not important, the notation expr, expr1,
expr2, and so on is used. Therefore,

while exprldo expr2

emphasizes that the control structure is concerned with the evaluation of its
arguments, not with their values or their types.

In describing functions, phrases such as “the function match(s1, s2) ... ” are
used to indicate the name of a function and the number and types of its arguments.
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Strictly speaking, match(s1, s2) is not a function but rather a call of the function
match. The shorter phraseology is used when there can be no confusion about its
meaning. In describing function calls in places where the specific arguments are not
relevant, the arguments are omitted, as in write(). Similarly, other readily under-
stood abbreviations are used. For example, “an integer between 1 and i” sometimes
is used in place of “an integer between 1 and the value of i”.

As illustrated by examples in this chapter, different typefaces are used to
distinguish program material and terminology. The sans serif typeface denotes
literal program text, such as procedure and read(). Italics are used for expressions
such as expr.

Running an lcon Program

The best way to learn a new programming language is to write programs in it.
Justentering the simple examples in this chapter and then extending them will teach
you a lot.

Chapter 14 describes how to run Icon programs. All you need to get started is
toknow how to name Icon files and how to compile and execute them. Although this
varies somewhat from platform to platform, in command-line environments like
MS-DOS and UNIX, it’s this simple:

e Enter an Icon program in a file with the suffix .icn. An example is hello.icn.

¢ At the command-line prompt, enter

icont hello.icn

e The result is an executable file that starts with hello and may end with .exe
or have no suffix at all. In any event, from the command-line prompt, enter

hello
to run the program.

If you are using a visual environment rather than a command-line one, the steps will
be somewhat different. Consult the Icon user manual for your platform. See
Appendix | for sources of Icon and documentation about it.

The Icon Program Library

The Icon program library contains a large collection of programs and proce-
dures (Griswold and Townsend, 1996). The programs range from games to utilities.
The procedures contain reusable code that extends Icon’s built-in repertoire.

Library procedures are organized into modules. A module may contain one or
many procedures. A module can be added to a program using the link declaration,
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as in

link strings

procedure main()

which adds the module strings to a program.

Useful material in the program library is mentioned at appropriate places in
this book. The use of library procedures and ways of creating new library proce-
dures are described in Chapter 15.

See Appendix J for information on how to get the Icon program library.
Testing lcon Expressions Interactively

Although Icon itself does not provide a way to enter and evaluate individual
expressions interactively, there is a program in the Icon program library that does.
This program, named gei, allows a user to type an expression and see the result of
its evaluation. Successive expressions accumulate and results are assigned to
variables so that previous results can be used in subsequent computations.

At the > prompt, an expression can be entered, followed by a semicolon and
a return. (If a semicolon is not provided, subsequent lines are included until there
is a semicolon.) The computation is then performed and the result is shown as an
assignment to a variable, starting with r1_ and continuing with r2_, r3_, and so on.
Here is an example of a simple interaction.

> 1+3;
ri =4

> rl_ 010;
r2_:=40

If an expression fails, gei responds with Failure, as in

> 1<0;
Failure

The program gei has several other useful features, such as optionally showing
the types of results. To get a brief summary of gei’s features and how to use them,
enter :help followed by a return.

Syntactic Considerations

The value of a constant defined by preprocessing can be any string. The string
simply is substituted for subsequent uses of the defined symbol. For example,

$define Sumi +j
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defines Sum to be i + j and i + j is substituted wherever sum appears subsequently.
In such uses, expressions should be parenthesized to assure proper grouping. For
example, in

k OSum
the result of substitution is

kOi+j
which groups as

(k Oi) +j

which presumably is not what is wanted and certainly does not produce the result
suggested by

k OSum
On the other hand

$define Sum (i + j)
produces the expected result:

k OG@ + )
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Expressions

The evaluation of expressions causes the computations that are performed during
program execution. Icon has a large repertoire of functions and operations, each of
which performs a different kind of computation.

The mostimportant aspect of expression evaluation in Icon is that the outcome
of evaluating an expression may be a single result, no result at all (failure), or a
sequence of results (generation). The possibilities of failure and generation distin-
guish Icon from most other programming languages and give it its unusual
expressive capability. These possibilities also make expression evaluation a more
important topic than it is in most other programming languages.

Several control structures in Icon are specifically concerned with failure and
generation. This chapter introduces the basic concepts of expression evaluation in
Icon. Chapter 7 contains additional information about expression evaluation.

SEQUENTIAL EVALUATION

In the absence of control structures, expressions in an Icon procedure are evaluated
in the order in which they appear; this is called sequential evaluation. Where
expressions are nested, inner expressions are evaluated first to provide values for
outer ones. For example, in

i=k+j
write(i)

17
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the values of k and j are added to provide the value assigned to i. Next, the value of
i is written. The two lines also could be combined into one, as

write(i := k + )

although the former version is more readable and generally better style.

The sequential nature of expression evaluation is familiar and natural. It is
mentioned here because of the possibilities of failure and generation. Consider, for
example

i :=find(s1, s2)
write(i)

As shown in Chapter 1, find(s1, s2) may produce a single result or it may fail.
It may also generate a sequence of results.

The single-result case is easy — it is just like
i=k+j

in which addition always produces a single result.

Suppose that find(s1, s2) fails. There is no value to assign to i and the
assignment is not performed. The effect is as if the assignment failed because one of
its arguments failed. Consequently, in

i :=find(s1, s2)
write(i)

if find(s1, s2) fails, i is not changed, and execution continues with write(i), which
writes the value i had prior to the evaluation of these two lines. It generally is not
good programming practice to let possible failure go undetected. This subject is
discussed in more detail later.

Since a substring can occur in a string at more than one place, find(s1, s2) can
have more than one possible result. The results are generated, as needed, in order
from left to right. In the example above, assignment needs only one result, so the first
result is assigned to i and sequential execution continues (writing the newly
assigned value of i). The other possible results of find(s1, s2) are not produced.

The next section illustrates situations in which a generator may produce more
than one result.

GOAL-DIRECTED EVALUATION

Failure during the evaluation of an expression causes previously evaluated genera-
tors to produce additional values. This is called goal-directed evaluation, since failure
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of a part of an expression does not necessarily cause the entire expression to fail;
instead other possibilities are tried in an attempt to find a combination of values that
makes the entire expression succeed.

Goal-directed evaluation is illustrated by the following expression
if find(s1, s2) > 10 then write("good location")

Suppose sl occurs in S2 at positions 2, 8, 12, 20, and 30. The first value produced by
find(s1, s2) is 2, and the comparison is:

2>10

This comparison fails, which causes find(s1, s2) to produce its next value, 8. The
comparison again fails, and find(s1, s2) produces 12. The comparison now succeeds
and good location is written. Note that find(s1, s2) does not produce the values 20
or 30. As in assignment, once the comparison succeeds, no more values are needed.

Observe how natural the formulation
find(s1, s2) > 10

is. Itembodies in a concise way a conceptually simple computation. Try formulating
this computation in Pascal or C for comparison. This method of expression evalu-
ation is used very frequently in Icon programs. It is a large part of what makes Icon
programs short and easy to write. It is not necessary to think about all the details of
what is going on.

Failure may cause expression evaluation to go back to a previously evaluated
expression. For example, in the preceding example, failure of a comparison opera-
tion caused evaluation to return to a function that had already produced a value.
Thisis called control backtracking. Control backtracking only happens in the presence
of generators. An expression that produces a value and may be capable of producing
another one suspends. Instead of just producing a value and “going away”, it keeps
track of what it was doing and remains “in the background” in case it is needed
again. Failure causes a suspended generator to be resumed so that it may produce
another value. If a generator is resumed but has no more values, its resumption fails.
While the term failure is used to describe an expression that produces no value at all,
aresumed generator that does not produce a value (failed resumption) has the same
effect on expression evaluation — there is no value to use in an outer expression.

Note that when an outer computation succeeds there may be suspended
generators. They are discarded when there is no longer any need for them.
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ITERATION

Itis not necessary to rely on failure and goal-directed evaluation to produce several
values from a generator. In fact, there are many situations in which all (or most) of
the values of a generator are needed, but without any concept of failure. The iteration
control structure

every exprldo expr2

is provided for these situations. In this control structure, expr1 is first evaluated and
then repeatedly resumed to produce all its values. expr2 is evaluated for every value
that is produced by exprl.

For example,

every i := find(sl, s2) do
write(i)

writes all the values produced by find(s1, s2). Note that the repeated resumption of
find(s1, s2) provides a sequence of values for assignment. Thus, as many assign-
ments are performed as there are values for find(s1, s2).

The do clause is optional. This expression can be written more compactly as

every write(find(s1, s2))

INTEGER SEQUENCES

Icon has several expressions that generate sequences of values. One of the most
useful is

ito]jbyk
which generates the integers from i to j in increments of k. The by clause is optional;
if it is omitted, the increment is 1. For example,

$define Limit 10

every i:=1to Limit do

write(i * 2)

writes the squares 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100.

Note that iteration in combination with integer generation corresponds to the
for control structure found in many programming languages. There are, however,
many other ways iteration and integer generation can be used in combination. For
example, the expression above can be written more compactly as
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every write((1 to Limit) ~ 2)

The function seq(i, j) generates a sequence of integers starting at i with
increments of j, but with no upper bound.

ALTERNATION

Since a generator may produce a sequence of values and those values may be used
in goal-directed evaluation and iteration, it is natural to extend the concept of a
sequence of values to apply to more than one expression. The alternation control
structure,

exprl| expr2

does this by first producing the values for exprl and then the values for expr2. For
example,

01
generates 0 and 1. Thus, in
if i = (0] 1) then write("okay")

okay is written if the value of i is either 0 or 1. The arguments in an alternation
expression may themselves be generators. For example,

(1to3)| (3to1by-1)

generates 1, 2, 3, 3,2, 1.

When alternation is used in goal-directed evaluation, such as
if i = (0] 1) then write(i)

itreads naturally as “if iis equal to 0 or 1, then ...”. On the other hand, if alternation
is used in iteration, as in

everyi:=(0]1)do
write(i)
it reads more naturally as “i is assigned 0 then 1”.

The or/ then distinction reflects the usual purpose of alternation in the two
different contexts and suggests how to use alternation to formulate computations.
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CONJUNCTION

As explained earlier, an expression succeeds only if all of its component
subexpressions succeed. For example, in

find(s1, s2) = find(s1, s3)

the comparison expression fails if either of its argument expressions fails. The same
is true of

find(s1, s2) + find(s1, s3)
and, in fact, of all operations and functions. It often is useful to know if two or more
expressions succeed, although their values may be irrelevant. This operation is
provided by conjunction,

exprlé& expr2

which succeeds (and produces the value of expr2) only if both exprl and expr2
succeed. For example,

if find(s1, s2) & find(s1, s3) then write ("okay")

writes okay only if s1 is a substring of both s2 and s3.

Note that conjunction isjust an operation that performs no computation (other
than returning the value of its second argument). It simply binds two expressions
together into a single expression in which the components are mutually involved in
goal-directed evaluation. Conjunction normally is read as “and”. For example,

if (i > 100) & (i = j) then write(i)

might be read as “if i is greater than 100 and i equalsj ...”

Note also that in goal-directed contexts,
exprl| expr2| ... | exprn
and
exprl& expr2& ... & exprn

correspond closely to logical disjunction and conjunction, respectively. Thus, and/
or conditions can be easily composed using conjunction and alternation.
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There are two control structures that evaluate an expression repeatedly, depending
on the success or failure of a control expression:

while exprldo expr2
described earlier, and
until exprldo expr2

which repeatedly evaluates expr2 until expr]l succeeds. In both cases exprl is
evaluated before expr2. The do clauses are optional. For example,

while write(read())

copies the input file to the output file.

A related control structure is
not (expr
which fails if expr succeeds, but succeeds if expr fails. Therefore,

until exprldo expr2
and

while not (exprl) do expr2
are equivalent. The form that is used should be the one that is most natural to the

situation in which it occurs.

The while and until control structures are loops. Loops normally are terminated
only by the failure or success of their control expressions. Sometimes it is necessary
to terminate a loop, independent of the evaluation of its control expression.

The break expression causes termination of the loop in which it occurs. The
following program illustrates the use of the break expression:
procedure main()
count:=0

while line :=read() do
if match("stop", line) then break
else count := count + 1

write(count)

end
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This program counts the number of lines in the input file up to a line beginning with
the substring "stop".

Sometimes it is useful to skip to the beginning of the control expression of a
loop. This canbe accomplished by the nextexpression. Although the nextexpression
is rarely needed in simple cases, the following example illustrates its use:

procedure main()

while line := read() do
if match("comment", line) then next
else write(line)

end

This program copies the input file to the output file, omitting lines that begin with
the substring "comment".

The break and nextexpressions may appear anywhere inaloop, but they apply
only to the innermost loop in which they occur. For example, if loops are nested, a
break expression only terminates the loop in which it appears, not any outer loops.
The use of a break expression to terminate an inner loop is illustrated by the
following program, which copies the input file to the output file, omitting lines
between those that begin with "skip"” and "end", inclusive.

procedure main()

while line := read() do

if match("skip", line) then { # check for lines to skip
while line := read() do # skip loop
if match("end", line) then break
}
else write(line) # write line in main loop

end

There is one other looping control structure:
repeat expr

This control structure evaluates expr repeatedly, regardless of whether it succeeds
or fails. It is useful when the controlling expression cannot be placed conveniently
at the beginning of a loop. A repeat loop can be terminated by a break expression.

Consider an input file that is organized into several sections, each of which is
terminated by a line beginning with "end". The following program writes the
number of lines in each section and then the number of sections.



Chap. 2 Expressions

procedure main()

setcount := 0

repeat {
setcount := setcount + 1
linecount :=0

while line :=read() do {
linecount := linecount + 1
if match("end", line) then {
write(linecount)
break
}
}

if linecount = 0 then break

}

write(setcount, " sections")

end

25

# end of file

The outcome of a loop, once it is complete, is failure. That is, a loop itself
produces no value. In most cases, this failure is not important, since loops usually
are not used in ways in which their outcome is important.

SELECTION EXPRESSIONS

The most common form of selection occurs when one or another expression is
evaluated, depending on the success or failure of a control expression. As described

in Chapter 1, this is performed by

if exprlthen expr2else expr3

which evaluates expr2 if exprl succeeds but evaluates expr3 if exprl fails.

If there are several possibilities, if-then-else expressions can be chained to-

gether, as in

if match("begin”, line) then depth := depth + 1
else if match("end", line) then depth := depth — 1

else other := other + 1

The else portion of this control structure is optional:

if exprlthen expr2
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evaluates expr2 only if expr] succeeds. The not expression is useful in this abbrevi-
ated if-then form:

if not (exprl) then expr2

which evaluates expr2 only if expr] fails. In this situation, parentheses are often
needed around exprl because not has high precedence.

While if-then-else selects an expression to evaluate, depending on the success
or failure of the control expression, it is often useful to select an expression to
evaluate, depending on the value of a control expression. The case control structure
provides selection based on value and has the form

case exprof {
case-clause
case-clause

}

The expression expr after case is a control expression whose value controls the
selection. There may be several case clauses. Each case clause has the form

exprl: expr2

The value of the control expression expr is compared with the value of expr1 in each
case clause in the order in which the case clauses appear. If the values are the same,
the corresponding expr2 is evaluated, and its outcome becomes the outcome of the
entire case expression. If the values of expr and expr1 are different, or if expr1 fails,
the next case clause is tried.

There is also an optional default clause that has the form
default : expr2

If no comparison of the value of the control expression with expr1 is successful, expr2
in the default clause is evaluated, and its outcome becomes the outcome of the case
expression. The default clause may appear anywhere in the list of case clauses, but
it is evaluated last. It is good programming style to place it last in the list of case
clauses.

Once an expression is selected, its outcome becomes the value of the case
expression. Subsequent case clauses are not processed, even if the selected expres-
sion fails. A case expression itself fails if (1) its control expression fails, (2) if the
selected expression fails, or (3) if no expression is selected.
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Any kind of value can be used in the control expression. For example,

case s of {
"begin"  : depth :=depth + 1
"end" . depth :=depth-1
}

increments depth if the value of s is the string "begin" but decrements depth if the
value of sis the string "end". Since there is no default clause, this case expression fails
if the value of s is neither "begin" nor "end". In this case, the value of depth is not
changed.

The expression in a case clause does not have to be a constant. For example,

case i of {
j+1 . write("high™)
ji—1 : write("low")
] . write("equal”)
default : write("out of range")
}

writes one of four strings, depending on the relative values of i and j.

The expression in a case clause can be a generator. If the first value it produces
is not the same as the value of the control expression, itis resumed for other possible
values. Consequently, alternation provides a useful way of combining case clauses.
An example is:

case i of {
0 . write("at origin")
1]1-1 . write("near origin")
default  : write("not near origin®)
}

Since the outcome of a case expression is the outcome of the selected expres-
sion, it sometimes is possible to “factor out” common components in case clauses.
For example, the case expression above can be written as

write(
case i of {
0 . "at origin"
1|-1 : "near origin"
default : "not near origin”
}
)

Such constructions can be difficult to read and should be used with restraint.
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Note that each case clause allows just a single expression to be executed. If
multiple expressions are needed, they must be grouped using braces.

COMPARISON OPERATIONS
A comparison operation such as
=]
produces the value of its right operand if it succeeds. For example
write(find(s1, s2) = find(s3, s4))

writes the first common position if there is one.

Comparison operations are left associative, so an expression such as
i<j<k
groups as
(i<j)<k

Since a comparison operation produces the value of its right operand if it succeeds,
the expression above succeeds if and only if the value jis between the values of i and

k.

ASSIGNMENT
One of the most commonly used operations is assignment, which has the form
X =y

and assigns the value of y to the variable x.

Assignment associates to the right, so that

X =y:=z
groups as
X:=(y:=2)

Consequently, the value of z is assigned to both y and x.
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Augmented Assignment

One of the most common operations in programming is incrementing the
numerical value of a variable, as in

i=i+1

In order to make such operations more concise and to avoid two references to
the same variable, Icon provides augmented assignment operations that combine
assignment with the computation to be performed. For example,

i+=1

adds one to the value of i.

There are augmented assignment operations corresponding to all infix opera-
tions (except assignment operations themselves); the := is simply appended to the
operator symbol. For example,

id=10
is equivalent to

i:=i00
Similarly,

i>=]j
assigns the value of j to i if the value of i is greater than the value of j. This may seem
abit strange at first sight, since most programming languages do not treat compari-
son operations as numerical computations, but this feature of Icon sometimes can be
used to advantage.
Exchanging Values

The operation

X:=y

exchanges the values of x and y. For example, after evaluating

sl :="begin
s2 :="end"
sl :=:s2
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the value of sl is "end" and the value of s2 is "begin".

The exchange operation associates from right to left and returns its left
argument as a variable. Consequently,

X:i=y=iz
groups as
X = (y = 2)

VALUES, VARIABLES, AND RESULTS

Some expressions produce values, while others (such as assignment) produce
variables, which in turn have values. For example, the string literal "hello" is a value,
while the identifier line is a variable. It is always possible to get the value of a
variable. This is done automatically by operations such as i + j, in which the values
of i and j are used in the computation.

On the other hand, values are not obtained from variables unless they are
needed. For example, the expression x | y generates the variables x and y, so that
every (x|y):=0
assigns 0 to both x and y. The if-then-else and case control expressions also produce
variables if the selected expression does.
The term result is used collectively to include both values and variables.
Consequently, it is best to describe

exprl| expr2

as generating the results of expr1 followed by the results of expr2.

Note that the term outcome includes results (values and variables) as well as
failure.

The keyword &fail does not produce a result. It can be used to indicate failure
explicitly.

ARGUMENT EVALUATION

The arguments of function and procedure calls are evaluated from left to right. If the
evaluation of an argument fails, the function or procedure is not called. If more
arguments are given in a call than are expected, the extra arguments are evaluated,
buttheir values are notused. If the evaluation of an extra argument fails, the function
or procedure is not called, just as in the case of the evaluation of any other argument.
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If an argument is omitted, as in write(), the value of that argument is null. Many
functions have defaults that are used if an argument is null. For example, in write(),
the null value defaults to an empty string and an empty (blank) line is written.
Another example is the function seq(i, j), which was described earlier. If its
arguments are omitted, and hence null, they default to 1. Consequently, seq()
generates 1,2, 3, ... and seq(7) generates 7, 8,9 ... .

The keyword &null produces the null value. Consequently, write() and
write(&null) are equivalent. The null value is described in more detail in Chapter 10.

PROCEDURE RETURNS
As shown in Chapter 1, a procedure call may return a value, as in
return count

or it may fail and not return a value by using fail. A procedure call also may fail by
flowing off the end of the procedure body without an explicit return.

A procedure also may generate a sequence of values by using suspend, as in
the following example:

procedure To(i, j)

while i <=j do {
suspend i
i+=1
}

fail

end

The suspend expression produces a value from the procedure call in the same
manner as return, but the call is suspended and can be resumed. If it is resumed,
evaluation continues following the point of suspension. In the example above, the
first result produced is the value of i, provided it is less than or equal to j. If the call
isresumed, i is incremented. If i is still less than or equal toj, the call suspends again
with the new value of i. If i is greater than j, the loop terminates and fail is evaluated,
which causes the resumption of the call to fail. The fail expression is not necessary,
since flowing off the end of the procedure body has the same effect. Consequently,

every write(To(1, 10))
is equivalent to

every write(1 to 10)
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The suspend expression is like the every expression; if its argument is a
generator, the generator is resumed when the procedure call is resumed. Thus,

suspend (1|35 7]11)
suspends with the values 1, 3, 5, 7, 11 as the call in which it appears is successively

resumed.

NOTES

Testing lcon Expressions Interactively

Success, failure, and generation in expression evaluation are powerful pro-
gramming tools, but they may be unfamiliar. Testing various expressions interac-
tively (or in a simple program) can help with understanding expression evaluation
in Icon and dispel potential misconceptions.

The program gei, mentioned in the Notes section of Chapter 1, is particularly
useful in this context. The command :every at the beginning of a line instructs gei to
show every result of a generator. For example

> everyltob5;

produces

abr~rwnN PRk

Care should be taken not to specify a generator that has a large number of results.
Syntactic Considerations

The way that expressions are grouped in the absence of braces or parentheses
is determined by the precedence and associativity of the syntactic tokens that
comprise expressions. Appendix A contains detailed information on these matters.

Ideally, precedence and associativity lead to natural groupings of expressions
and produces the expected results. In some cases, however, what is natural in one
context is not natural in another, and precedence and associativity rules may cause
expressions to group differently than expected. Such potential problems are noted
at the ends of subsequent chapters.
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The grouping of conjunction and alternation with other operations is a
frequent source of problems. Conjunction has the lowest precedence of all opera-
tions. Alternation, on the other hand, has a medium precedence. Consequently,

exprl& expr2| expr3
groups as
exprl& (expr2| exprd
Since, in the absence of parentheses, such expressions are easily misinterpreted, itis

good practice to use parentheses even if they are notnecessary. There are many other
cases where this rule applies. For example,

1t0 10| 20
groups as
1to (10 | 20)

The moral is clear: Parenthesize for readability as well as correctness.

When control structures are nested, braces can be used for grouping as shown
inexamples earlier in this chapter. Evenif braces are not necessary, using them helps
avoid errors that may result from unexpected groupings in complicated expres-
sions. Using braces to delimit expressions also can make programs easier to read —
it is difficult for human beings to parse nested expressions.

Consistent and appropriate indentation (“paragraphing”) also makes pro-
grams easier to read. There are several styles of indentation. The one to use is largely
a matter of taste, but it should be consistent and should accurately reflect the
grouping of expressions.

There are a few common syntactic problems that arise in control structures.
One is that the do clause in every, which, and until is optional. If a do clause is
intended but omitted by accident, the results can be unexpected. Consider for
example,

while line :=read()
process(line)

This is syntactically correct, but since there is no do, all input lines are read and then
process(line) is evaluated once. Because of the omitted do, only the last input line is
processed.
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The precedence of not is higher than that of any infix operation. For example,
not find(sl, s2) = 10
groups as
(not find(s1, s2)) = 10

As a general rule, it is advisable to use parentheses for grouping in expressions
containing not to avoid such unexpected results, as shown in earlier examples.

If there is a “dangling” else in nested if-then-else expressions, the else clause
is grouped with the nearest preceding if. Consider, for example, the following
section of a program for analyzing mailing lists:

if find("Mr.", line) then
if find("Mrs.", line)
thenmm:=mm+1
elsemr:=mr+1

These lines group as
if find("Mr.", line) then {
if find("Mrs.", line) then mm :=mm + 1
elsemr:=mr+1

}

The precedence of then and else is lower than the precedence of any infix operation,
S0

ifi>jthenk :=ielsek:=j
groups as
ifi >jthen (k:=i) else (k :=j)

which usually is what is intended.

In Icon, unlike many other programming languages, control structures are
expressions. For example, the outcome of

if exprlthen expr2else expr3

is the outcome of expr2 or expr3 depending on whether exprl succeeds or fails.
Consequently, it is possible to write expressions such as

(ifi>jthenielsej):=0
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to assign 0 to either i or j, depending on the relative magnitudes of their values.
Although Icon allows such constructions, they tend to make programs difficult to
read. It usually is better style to write such an expression as

ifi>jtheni:=0elsej:=0

The assignment and numerical comparison operators are easily confused.
Thus,

i=(11]2)
compares the value of i to 1 and then 2, while
i=(1]2)

assigns 1 toi. (The second argument of alternation is not used, since assignment only
needs one value.)
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String Scanning

Icon has many facilities for manipulating strings of characters (text). Its most
powerful facility is high-level scanning for analyzing and synthesizing strings in a
general way. This chapter is devoted to string scanning. Other string-processing
facilities are described in Chapter 4.

THE CONCEPT OF SCANNING

Icon’s string scanning facility is based on the observation that many operations on
strings can be cast in terms of a succession of operations on one string at a time. By
making this string, called the subject, the focus of attention of this succession of
operations, it need not be mentioned in each operation. Furthermore, operations on
a string often involve finding a position of interest in the string and working from
there. Thus, the position serves as a focus of attention within the subject. The term
scanning refers to changing the position in the subject. String scanning therefore
involves operations that examine a subject string at a specific position and possibly
change the position.

The form of a string-scanning expression is
exprl? expr2

where exprl provides the subject to be scanned and expr2 does the scanning. The
outcome of the scanning expression is the outcome of expr2. String scanning is
illustrated by the function move(i), which increments the position by i characters if

37
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that is possible but fails if it is not. This function also produces the portion of the
subject between the old and new positions. A function that produces a substring of
the subject while changing the position is called a matching function.

Scanning starts at the beginning of the subject, so that

text ? {
while move(1) do
write(move(1))

}

writes the even-numbered characters of text on separate lines.

STRING POSITIONS

In Icon, positions in strings are between characters and are numbered starting with
1, which is the position to the left of the first character:

For convenience in referring to characters with respect to the right end of the
string, there are corresponding nonpositive position specifications:

d r a g o] n
1 1 1 1 1 1 1
-6 5 -4 3 -2 -1 0

The matching function tab(i) sets the position in the subject to i. For example,

text ? {
if tab(3) then
while move(1) do
write(move(1))

}

writes the even-numbered characters of text starting with the fourth one, provided
text is that long. The argument of tab() can be given by a nonpositive specification,
and a negative argument to move() decreases the position in the subject. Conse-
quently,

text ? {
tab(0)
while write(move(-1))

}
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writes the characters of text from right to left. Notice that it is not necessary to know
how long text is.

The function pos(i) succeeds if the position in the subjectis i but fails otherwise.
For example,

expré& pos(0)

succeeds if the position is at the right end of the string after expr is evaluated.

STRING ANALYSIS

String analysis often involves finding a particular substring. The string-analysis
function find(s1, s2), used earlier to illustrate failure and generation, performs this
operation. When find() is used in string scanning, its second argument is omitted,
and the subject is used in its place. For example,

write(text ? find("the"))

writes the position of the first occurrence of "the" in text, provided there is one.
Similarly,

every write(text ? find("the"))

writes all the positions of "the" in text. Note that the scanning expression generates
all the values generated by find("the").

In string analysis, the actual value of the position of a substring usually is not
as interesting as the context in which the substring occurs — for example, what
precedes or follows it. Since a string-analysis function produces a position and the
matching function tab() moves to a position and produces the matched substring,
the two can be used in combination. For example,

write(text ? tab(find(",")))
writes the initial portion of text prior to the first comma in it (if any). Similarly,

text ? {
if tab(find(",") + 1) then
write(tab(0))
}

writes the portion of text after the first comma in it (if any).

Alternation may be used in the argument of find() to look for any one of several
strings. For example,
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text ? {
if tab(find("a" | "e" | "i" | "0" | "u") + 1) then
write(tab(0))
}

writes the portion of text after a lowercase vowel. Since alternatives are tried only if
they are needed, if there is an "a" in text, the string after it is written, even if there is
another vowel before the "a".

CSETS

In the example above, what happens depends on the order in which the alternatives
are written. On the other hand, in string analysis, order oftenisnotimportant or even
appropriate. For example, the scanning expression at the end of the preceding
section does not write the first lowercase vowe